
One-Dimensional Partitioning for

Heterogeneous Systems: Theory and Practice

Ali Pınar a,1, E. Kartal Tabak b and Cevdet Aykanat b,2

aComputational Research Division. Lawrence Berkeley National Laboratory

bDepartment of Computer Engineering, Bilkent University

Abstract

We study the problem of one-dimensional partitioning of nonuniform workload ar-

rays with optimal load balancing for heterogeneous systems. We look at two cases:

chain-on-chain partitioning, where the order of the processors is specified, and chain

partitioning, where processor permutation is allowed. We present polynomial time

algorithms to solve the chain-on-chain partitioning problem optimally, while we

prove that the chain partition is NP-complete. Our empirical studies show that our

proposed exact algorithms produce substantially better results than heuristics while

the solution times remain comparable.

Key words: parallel computing; one-dimensional partitioning; load balancing;

chain-on-chain partitioning; dynamic programming; parametric search;

Email addresses: apinar@lbl.gov (Ali Pınar), tabak@cs.bilkent.edu.tr (E.

Kartal Tabak), aykanat@cs.bilkent.edu.tr (Cevdet Aykanat).
1 Supported by the Director, Office of Science, Division of Mathematical, Infor-

mation, and Computational Sciences of U.S. Department of Energy under contract

DE-AC03-76SF00098. One Cyclotron Road MS 50F, Berkeley, CA 94720
2 Corresponding author. Partially supported by Scientific and Research Council of

Preprint submitted to Journal of Parallel and Distributed Computing2 February 2007



1 Introduction

In many applications of parallel computing, load balancing is achieved by

mapping a possibly multi-dimensional computational domain down to a one-

dimensional (1D) array, and then partitioning this array into parts with equal

weights. Space filling curves are commonly used to map the higher dimensional

domain to a 1D workload array to preserve locality and minimize communica-

tion overhead after partitioning [5,8,13]. Similarly, processors can be mapped

to a 1D array so that communication is relatively faster between close proces-

sors in this processor chain [9]. This eases mapping for computational domains

and improves efficiency of applications. The load balancing problem for these

applications can be modeled as the chain-on-chain partitioning (CCP) prob-

lem, where we map a chain of tasks onto a chain of processors. Formally, the

objective of the CCP problem is to find a sequence of P−1 separators to divide

a chain of N tasks with associated computational weights into P consecutive

parts to minimize maximum load among processors.

In our earlier work [15], we studied the CCP problem for homogenous systems,

where all processors have identical computational powers. We have surveyed

the rich literature on this problem, proposed novel methods as well as im-

provements on existing methods, and studied how these algorithms can be

implemented efficiently to be effective in practice. In this work, we investigate

how these techniques can be generalized for heterogeneous systems, where

processors have varying computational powers. Two distinct problems arise in

partitioning chains for heterogeneous systems. The first problem is the CCP

problem, where a chain of tasks is to be mapped onto a chain of processors,

Turkey (TÜBİTAK) under grant 103E028

2



i.e., the pth task subchain in a partition is assigned to the pth processor. The

second problem is the chain partitioning (CP) problem, where a chain of tasks

is to be mapped onto a set, as opposed to a chain, of processors, i.e., processors

can be permuted for subchain assignments. For brevity, the CCP problem for

homogenous systems and heterogeneous systems will be referred to as the ho-

mogenous CCP problem and heterogeneous CCP problem, respectively. The

CP problem refers to the chain partitioning problem for heterogeneous sys-

tems, since it has no counterpart for homogenous systems.

In this article, we show that the heterogeneous CCP problem can be solved

in polynomial time by enhancing the exact algorithms proposed for the solu-

tion of the homogenous CCP problem [15]. We present how these exact algo-

rithms for homogenous systems can be enhanced for heterogeneous systems

and implemented efficiently for runtime performance. We also present how

the heuristics widely used for the solution of homogenous CCP problem can

be adapted for heterogeneous systems. We present the implementation details

and pseudocodes for the exact algorithms and heuristics for clarity and repro-

ducibility. Our experiments with workload arrays coming from image-space-

parallel volume rendering and row-parallel sparse matrix vector multiplication

applications show that our proposed exact algorithms produce substantially

better results than the heuristics while the solution times remain comparable.

On average, optimal solutions provide 10.3 and 9.0 times better load imbal-

ance than heuristics for 256-way partitionings of volume rendering and sparse

matrix datasets, respectively. On average, the time it takes to compute an

optimal solution is less than 2.70 times the time it takes to compute an ap-

proximation using heuristics for 256 processors, and thus the preprocessing

times can be easily compensated by the improved efficiency of the subsequent

3



computation even for a few iterations.

The CP problem on the other hand, is NP-complete as we prove in this paper.

Our proof uses a pseudo-polynomial reduction from the 3-Partition problem,

which is known to be NP-complete in the strong sense [6]. Our empirical

studies showed that processor ordering has a very limited effect on the solution

quality, and an optimal CCP solution on a random processing ordering serves

as an effective CP heuristic.

The remainder of this paper is organized as follows. Table 1 summarizes im-

portant symbols used throughout the paper. Section 2 introduces the het-

erogeneous CCP problem. In Section 3, we summarize the solution methods

for homogenous CCP. In Section 4, we discuss how solution methods for ho-

mogenous systems can be enhanced to solve the heterogeneous CCP problem.

In Section 5, we discuss the CP problem, prove that it is NP-Complete. We

present the results of our empirical studies with the proposed methods in

Section 6, and finally, we conclude with Section 7.

2 Chain-on-chain (CCP) Problem for Heterogeneous Systems

In the heterogeneous CCP problem, a computational problem, which is de-

composed into a chain T = 〈t1, t2, . . . , tN〉 of N tasks with associated positive

computational weights W = 〈w1, w2, . . . , wN〉 is to be mapped onto a pro-

cessor chain P = 〈P1,P2, . . . ,PP 〉 of P processors with associated execution

speeds E = 〈e1, e2, . . . , eP 〉. The execution time of task ti on processor Pp is

wi/ep. For clarity, we note that there are no precedence constraints among the

tasks in the chain.

A task subchain Ti,j = 〈ti, ti+1, . . . , tj〉 is defined as a subset of contiguous tasks.

4



Table 1
The summary of important abbreviations and symbols
Notation Explanation

N number of tasks

T task chain, i.e., T = 〈t1, t2, . . . , tN 〉
ti ith task in the task chain

Ti,j task subchain of tasks from ti upto tj , i.e., Ti,j = 〈ti, ti+1, . . . , tj〉
wi computational load of task ti

wmax maximum computational load among all tasks

wavg average computational load of all tasks

wmin minimum computational load of all tasks

Wi,j total computational load of task subchain Ti,j

Wtot total computational load, i.e., Wtot = W1,N

P number of processors

P processor chain, i.e., P = 〈P1,P2, . . . ,PP 〉 in the CCP problem

processor set, i.e., P = {P1,P2, . . . ,PP } in the CP problem

Pp pth processor in the processor chain

Pq,r processor subchain from Pq upto Pr , i.e., Pq,r = 〈Pq ,Pq+1, . . . ,Pr〉
ep execution speed of processor Pp

Eq,r total execution speed of processor subchain Pq,r

Etot total execution speed of all processors, i.e., Etot = E1,P

B∗ ideal bottleneck value, achieved when all processors have load in proportion to their speed

UB upper bound on the value of an optimal solution

LB lower bound on the value of an optimal solution

sp index of the last task assigned to the pth processor.

lg x base-2 logarithm of x, i.e., lg x = log2 x.

The computational weight of subchain Ti,j is Wi,j =
∑j

h=i wh. A partition

Π should map contiguous task subchains to contiguous processors. Hence, a

P -way partition of a task chain with N tasks onto a processor chain with P

processors is described by a sequence Π = 〈s0, s1, . . . , sP 〉 of P +1 separator

indices, where s0 = 0 ≤ s1 ≤ · · · ≤ sP = N . Here, sp denotes the index of

the last task of the pth part so that processor Pp receives the task subchain

Tsp−1+1,sp with load Wsp−1+1,sp/ep. The cost C(Π) of a partition Π is determined

by the maximum processor load among all processors, i.e.,

C(Π) = max
1≤p≤P

{
Wsp−1+1,sp

ep

}

(1)

This C(Π) value of a partition is called its bottleneck value, and the processor

defining it is called the bottleneck processor. The CCP problem is to find a

partition Πopt that minimizes the bottleneck value C(Πopt).

5



Similar to the task subchain definition, a processor subchain Pq,r = 〈Pq,Pq+1, . . . ,Pr〉

is defined as a subset of contiguous processors. The computational speed of

Pq,r is Eq,r =
∑r

p=q ep.

The ideal bottleneck value B∗ is achieved when all processors are equally

loaded as

B∗ =
Wtot

Etot
, (2)

where Etot is the sum of all processor speeds and Wtot is the total task weight;

i.e., Etot = E1,P and Wtot = W1,N .

3 CCP Algorithms for Homogenous Systems

The homogenous CCP problem can be considered as a special case of the

heterogeneous CCP problem, where the processors are assumed to have equal

speed, i.e., ep = 1 for all p. Here, we review the CCP algorithms for homoge-

nous systems. A comprehensive review and presentation of homogenous CCP

algorithms is available in [15].

3.1 Heuristics

Possibly the most commonly used CCP heuristic is recursive bisection (RB),

a greedy algorithm. RB achieves P -way partitioning through lg P levels of

bisection steps. At each level, the workload array is divided evenly into two.

RB finds the optimal bisection at each level, but the sequence of optimal

bisections at each level may lead to a multi-way partition which is far away

from an optimal. Pınar and Aykanat [15] proved that RB produces partitions

with bottleneck values no greater than B∗+wmax(P − 1)/P .

Miguet and Pierson [11] proposed another heuristic that determines sp by

bipartitioning the task chain in proportion to the length of the respective

6



processor subchains. That is, sp is selected in such a way that W1,sp/W1,N is

close to the ratio p/P as much as possible. Miguet and Pierson [11] prove that

the bottleneck value found by this heuristic has an upper bound of B∗+wmax.

These heuristics can be implemented in O(N+P lg N) time. The O(N) time

is due to prefix-sum operation on the tasks array, after which, each separator

index can be found by a binary search on the prefix-summed array.

3.2 Dynamic Programming

The overlapping subproblems and the optimal substructure properties of the

CCP problem enable dynamic programming solutions. The overlapping sub-

problems are partitioning the first i tasks onto the first p processors, for all

possible i and p values. For the optimal substructure property, observe that

if the last processor is not the bottleneck processor in an optimal partition,

then the partitioning of the remaining tasks onto the first P − 1 processors

must be optimal. Hence, the recursive definition for the bottleneck value of an

optimal partition is

Bp
i = min

0≤j≤i

{
max

{
Bp−1

j , Wj+1,i

}}
(3)

Here, Bp
i denotes the optimal solution value for partitioning the first i tasks

onto the first p processors. In Eq. (3), searching for index j corresponds to

searching for separator sp−1 so that the remaining subchain Tj+1,i is assigned

to the last processor in an optimal partition. This definition defines a dynamic

programming table of size PN , and computing each entry takes O(N) time,

resulting in an O(N2P )-time algorithm. Choi and Narahari [3], and Olstad

and Manne [10] reduced the complexity of this scheme to O(NP ) and O((N −

P )P ), respectively. Pınar and Aykanat [15] presented enhancements to limit

the search space of each separator by exploiting upper and lower bounds on

7



the optimal solution value for better practical performance.

3.3 Parametric Search

Parametric search algorithms rely on two components: a probing operation

to determine if a solution exists whose bottleneck value is no greater than a

specified value, and a method to search the space of candidate values. The

probe algorithm can be computed only in O(P lg N) time by using binary

search on the prefix-summed workload array. Below, we summarize algorithms

to search the space of bottleneck values.

3.3.1 Nicol’s Algorithm

Nicol’s algorithm [12] exploits the fact that any candidate B value is equal

to the weight of a task subchain. A naive solution is to generate all subchain

weights, sort them, and then use binary search to find the minimum value for

which a probe succeeds. Nicol’s algorithm efficiently searches for this subchain

by considering each processor in order as a candidate bottleneck processor. For

each processor Pp, the algorithm does a binary search for the smallest index

that will make Pp the bottleneck processor. With the O(P lg N) cost of each

probing, Nicol’s algorithm runs in O(N+(P lg N)2) time.

Pınar and Aykanat [15] improved Nicol’s algorithm by utilizing the following

simple facts. If the probe function succeeds (fails) for some B, then probe

function will succeed (fail) for any B′ ≤ (≥)B. Therefore by keeping the

smallest B that succeeded and the largest B that failed, unnecessary probing

is eliminated, which drastically improves runtime performance [15].

8



3.3.2 Bidding Algorithm

The bidding algorithm [15,14] starts with a lower bound and proceeds by

gradually increasing this bound until a feasible solution value is reached. The

increments are chosen to be minimal so that the first feasible bottleneck value

is optimal. Consider the partition generated by a failed probe call that loads

the first P−1 processors maximally not to exceed the specified probe value. To

find the next bottleneck value, processors bid with the bottleneck value that

would add one more task to their domain, and the minimum bid among the

processors is chosen to be the next bottleneck value. The bidding algorithm

moves each one of the P separators for O(N) positions in the worst case, where

choosing the new bottleneck value takes O(lg P ) time using a priority queue.

This makes the complexity of the algorithm O(NP lg P ).

3.3.3 Bisection Algorithms

The bisection algorithm starts with a lower and an upper bound on the solution

value and uses binary search in this interval. If the solution value is known to be

an integer, then the bisection algorithm finds an optimal solution. Otherwise,

it is an ε-approximation algorithm, where ε is the user defined accuracy for

the solution. The bisection algorithm requires O(lg(wmax/ε)) probe calls, with

O(N+P lg N lg(wmax/ε)) overall complexity.

Pınar and Aykanat [15] enhanced the bisection algorithm by updating the

lower and upper bounds to realizable bottleneck values (the total weight of

a subchain). After a successful probe, the upper bound can be set to be the

bottleneck value of the partition generated by the probe function, and after a

failed probe, the lower bound can be set to be the smallest value that might

succeed, as in the bidding algorithm. These enhancements transform the bi-

9



section algorithm to an exact algorithm, as opposed to an ε-approximation

algorithm.

4 Proposed CCP Algorithms for Heterogeneous Systems

The algorithms we propose in this section enhance the techniques for homoge-

nous CCP to heterogeneous CCP. All algorithms discussed in this section

require an initial prefix-sum operation on the task-weight array W for the effi-

ciency of subsequent subchain-weight computations. The prefix-sum operation

replaces the ith entry W[i] with the sum of the first i entries (
∑i

h=1 wh) so that

computational weight Wij of a task subchain Tij can be efficiently determined

as W[j]−W[i− 1] in O(1) time. In our discussions, W is used to refer to the

prefix-summed W array, and O(N) cost of this initial prefix-sum operation

is considered in the complexity analysis. Similarly, Ea,b can be computed in

O(1) time on a prefix-summed processor-speed array. In all algorithms, we

focus only on finding the optimal solution value, since an optimal solution can

be easily constructed, once the optimal solution value is known.

Unless otherwise stated, BINSEARCH represents a binary search that finds

the index to the element that is closest to the target value. There are variants

of BINSEARCH to find the index of the greatest element not greater than the

target value, and we will state whenever such variants are needed. BINSEARCH

takes four parameters: the array to search, the start and end indices of the

sub-array, and the target value. The range parameters are optional, and their

absence means that the search will be performed on the whole array.

4.1 Heuristics

We propose a heuristic, RB, based on the recursive bisection idea. During

each bisection, RB performs a two step process. First, it divides the current

10



RB (W, E , p, r)
if p = r then

return;
Wtot ← Wsp−1+1,sr ;
q ← (p + r − 1)/2;
Wfirst ← Wtot × Ep,q/Ep,r;
W ← Wfirst + W1,sp−1;
sq ←BINSEARCH(W, sp−1, sr,W );
RB(W, E , p, q);
RB(W, E , q + 1, r);

MP (W, N, E , P )
for p ← 1 to P do

w ← W1,N × E1,p/E1,P ;
sp ←BINSRCH(W, w, sp−1, N);

Fig. 1. Heterogeneous CCP heuristics

processor chain Pp,r into two subchains Pp,q and Pq+1,r. Then, it divides the

current task chain Th,j into two subchains Th,i and Ti+1,j in proportion to the

computational powers of the respective processor subchains. That is, the task

separator index i is chosen such that the ratio Wh,i/Wi+1,j is close to the ratio

Ep,q/Eq+1,r, as much as possible. RB achieves optimal bisections at each level,

however, the quality of the overall partition may be far away from that of the

optimal solution.

We have investigated two metrics for bisecting the processor chain: chain

length and chain processing power. The chain length metric divides the cur-

rent processor chain Pp,r into two equal-length processor subchains, whereas

the chain processing power metric divides Pp,r into two equal-power subchains.

Since the first metric performed slightly better than the latter in our exper-

iments, we will only discuss the chain length metric here. The pseudocode

of the RB algorithm is given in Fig. 1, where the initial invocation takes its

parameters as (W, E , 1, P ) with s0 = 0 and sP = N . Note that sp−1 and sr are

already determined at higher levels of recursion. Wtot is the total weight of

current task subchain, and Wfirst is the weight for the first processor subchain

in proportion to its processing speed. We need to add W1,sp−1 to Wfirst to seek

it in the prefix-summed W array.

11



We also propose a generalization of Miguet and Pierson’s heuristic, MP [11].

MP computes the separator index of each processor by considering that pro-

cessor as a division point for the whole processor chain. In our version, the

load assigned to the processor chain P1,p is set to be proportional to the com-

putational power E1,p of this subchain, as shown in Fig. 1.

Both RB and MP can be implemented in O(N+P lg N) time, where the O(N)

time is due to prefix-sum operation on the task-weight array.

Below, we investigate the theoretical bounds on the quality of these two heuris-

tics. We assume P is a power of 2 for simplicity.

Lemma 4.1 BRB is upper bounded by B∗+wmax/emin − wmax/(Pemin).

Proof: We use induction, and the basis is easy to show for P = 2. For

the inductive step, assume the hypothesis holds for any number of processors

less than P . Consider the first bisection, where the processors are split into

two subchains, each containing P/2 processors. Let the total processing power

in the left subchain be Eleft. RB will distribute the workload array between

the left and right processor subchains as evenly as possible. There will be a

task ti such that the left processor subchain will weigh more than the right

subchain if ti is assigned to the left subchain, and vice versa. Without loss of

generality, assume that ti is assigned to the left subchain. In the worst case, ti

is the maximum weighted task, and the total task weight assigned to the left

subchain, Wleft, can be upper bounded by

Wleft ≤
(Wtot + wmax)Eleft

Etot
.

Using the inductive hypothesis, the bottleneck value among the processors of

the left processor subchain can be upper bounded as follows.

12



BRB ≤ Wleft

Eleft
+

wmax

emin
− wmax

eminP/2
≤ Wtot + wmax

Etot
+

wmax

emin
− wmax

eminP/2

= B∗ +
wmax

Etot
+

wmax

emin
− wmax

eminP/2
≤ B∗ +

wmax

eminP
+

wmax

emin
− wmax

eminP/2

= B∗ +
wmax

emin
− wmax

Pemin

The same bound applies to the right processor subchain directly by the in-

ductive hypothesis, since the right processor subchain is already underloaded.

!

Lemma 4.2 BMP is upper bounded by B∗ + wmax/emin.

Proof: Let the sequence 〈s0, s1, . . . , sP 〉 be the partition constructed by

MP. For a processor Pp, sp is chosen to be the separator that best divides P1,p

and Pp+1,P . Based on our discussion of bipartitioning quality in the proof of

Lemma 4.1, W1,sp is bounded by

E1,pB
∗ − wmax

2
≤ W1,sp ≤ E1,pB

∗ +
wmax

2

So, the load of processor p is upper bounded by

W1,sp − W1,sp−1

ep
≤ E1,pB∗ + wmax/2 − E1,p−1B∗ + wmax/2

ep

= B∗ +
wmax

ep
≤ B∗ +

wmax

emin

!

4.2 Dynamic Programming

The overlapping subproblems and the optimal substructure properties of the

homogenous CCP can be extended to the heterogeneous CCP, and thus en-

abling dynamic programming solutions. The recursive definition for the bot-

13



tleneck value of an optimal partition can be derived as

Bp
i = min

0≤j≤i

{

max

{

Bp−1
j ,

Wj+1,i

ep

}}

(4)

for the heterogeneous case. As in the homogenous case, Bp
i denotes the optimal

solution value for partitioning the first i tasks onto the first p processors. This

definition results in an O(N2P )-time DP algorithm.

We generalize the observations of Choi and Narahari [3] to develop an O(NP )-

time algorithm for heterogeneous systems as follows. Their first observation

relies on the fact that the optimal position of the separator for partitioning

the first i tasks cannot be to the left of the optimal position for the first i− 1

tasks, i.e., jp
i ≥ jp

i−1. Their second observation is that we need to advance a

separator index only when the last part is overloaded and can stop when this is

no longer the case, i.e., Bp−1
j ≥ Wj+1,i/ep. Then an optimal jp

i can be chosen to

correspond to the minimum of max{Bp−1
j , Wj+1,i/ep} and max{Bp−1

j−1 , Wj,i/ep}.

That is, the recursive definition becomes:

Bp
i = max

{

Bp−1
jp
i

,
Wjp

i +1,i

ep

}

, where jp
i = argmin

jp
i−1≤j≤i

{

max

{

Bp−1
j ,

Wj+1,i

ep

}}

.

It is clear that the search ranges of separators overlap at only one position,

and thus we can compute all Bp
i entries for 1 ≤ i≤ N in only one pass over

the task subchain. This reduces the complexity of the algorithm to O(NP ).

Fig. 2(a) presents this algorithm.

Olstad and Manne reduced the complexity further to O((N−P )P ) by observing

that there is no merit in leaving a processor empty, and thus the search for jp
i

can start at p instead of 1. However, this does not apply to the heterogeneous

CCP, since it might be beneficial to leave a processor empty.

14



DP (W, N, P, E)
for i ← 1 to N do

B[1, i] ← W1,i/e1;
for p ← 2 to P do

j ← 0;
for i ← j + 1 to N do

if Wj+1,i/ep ≤ B[p − 1, j] then
B[p, i] ← B[p − 1, j];

else
repeat

j ← j + 1;
until Wj+1,i/ep ≤ B[p − 1, j] or j ≥ i;
if Wj,i/ep < B[p − 1, j] then

j ← j − 1;
B[p, i] ← Wj+1,i/ep;

else
B[p, i] ← B[p − 1, j];

return Bopt ← B[P,N ];

(a)

DP+ (W, N, E , P, SL, SH)
for i ← SL1 to SH1 do

B[1, i] ← W1,i/e1;
for p ← 2 to P do

j ← SLp−1;
for i ← SLp to SHp do

if Wj+1,i/ep ≤ B[p − 1, j] then
B[p, i] ← B[p − 1, j];

else
repeat

j ← j + 1;
until Wj+1,i/ep ≤ B[p − 1, j] or j ≥ i;
if Wj+1,i/ep = B[p − 1, j] then

B[p, i] ← B[p − 1, j];
else if Wj,i/ep < B[p − 1, j] then

j ← j − 1;
B[p, i] ← Wj+1,i/ep;

else
B[p, i] ← B[p − 1, j];

return B[P,N ];

(b)

Fig. 2. DP algorithms for heterogeneous systems: (a) basic DP algorithm, and (b)
DP algorithm (DP+) with static separator index bounding.

We propose another DP algorithm by extending the DP+ algorithm (DP al-

gorithm with static separator-index bounding) of Pınar and Aykanat [15] for

the heterogeneous case. DP+ limits the search space of each separator to avoid

redundant calculation of Bp
i values. DP+ achieves this separator index bound-

ing by running left-to-right and right-to-left probe functions with the upper

and lower bounds on the optimal bottleneck value.

We extend the probing operation to the heterogeneous case as shown in

Fig. 3. In the figure, LR-PROBE and RL-PROBE denote the left-to-right

probe and right-to-left probe, respectively. These algorithms not only decide

whether a candidate value is a feasible bottleneck value, but they also set the

separator index (sp) values for their greedy approach. In LR-PROBE, BIN-

15



LR-PROBE (W, N, E , P,B)
sum ← 0;
for p ← 1 to P − 1 do

myB ← B × ep;
Bsum ← sum + myB;
m ← BINSEARCH(W, Bsum);
sum ← W1,m;
sp ← m;

if sum + B × eP ≥ W1,N then
return TRUE;

else
return FALSE;

(a)

RL-PROBE (W, N, E , P,B)
sum ← W1,N ;
for p ← P downto 2 do

myB ← B × ep;
Bsum ← sum − myB;
m ← BINSEARCH(W, Bsum);
sum ← W1,m;
sp−1 ← m;

if sum − B × e1 ≤ 0 then
return TRUE;

else
return FALSE;

(b)

Fig. 3. Greedy PROBE algorithms for heterogeneous systems: (a) left-to-right, and
(b) right-to-left.

SEARCH(W, w) searches W for the largest index m such that W1,m ≤ w.

Similarly, in RL-PROBE, BINSEARCH(W, w) refers to a binary search algo-

rithm that searches W for the smallest index m such that W1,m ≥ w.

DP+, as presented in Fig. 2(b), uses Lemma 4.3 to limit the search space of

sp values.

Lemma 4.3 For a given heterogeneous CCP instance (W, N, E , P ), a feasible

bottleneck value UB and a lower bound on the bottleneck value LB; let the

sequences Π1 = 〈h1
0, h

1
1, . . . , h

1
P 〉, Π2 = 〈l20, l21, . . . , l2P 〉, Π3 = 〈l30, l31, . . . , l3P 〉 and

Π4 = 〈h4
0, h

4
1, . . . , h

4
P 〉 be the partitions constructed by LR-PROBE(UB ), RL-

PROBE(UB ), LR-PROBE(LB ) and RL-PROBE(LB), respectively. Then, an

optimal partition Πopt = 〈s0, s1, . . . , sP 〉 satisfies SLp ≤ sp ≤ SHp for all

1 ≤ p ≤ P , where SLp = max{l2p, l3p} and SHp = min{h1
p, h

4
p}.

Proof: We know that any feasible bottleneck value is greater than or equal

to the optimal bottleneck value, i.e., UB ≥ Bopt. Consider h1
p, which is the

largest index such that the first h1
p tasks can be partitioned over p processors

without exceeding UB . Then sp > h1
p implies Bopt > UB , a contradiction. So,

16



sp ≤ h1
p. Since, RL-PROBE is just the symmetric algorithm of LR-PROBE, the

same argument proves sp ≥ l2p.

Consider the optimal partition constructed by RL-PROBE(Bopt). Since Bopt ≥

LB , by the greedy property of RL-PROBE, sp ≤ h4
p. Assume sp < l3p for some

p, then another partition obtained by advancing the sp value to l3p does not

increase the bottleneck value, since the first l3p tasks are successfully partitioned

over the first p processors without exceeding LB and thus Bopt. An optimal

partition Πopt = 〈s0, s1, . . . , sP 〉 satisfies l3p ≤ sp ≤ h4
p. !

The lower bound LB can be initialized to the optimal lower bound when all

processors are equally loaded as

LB = B∗ =
Wtot

Etot
. (5)

An upper bound UB can be computed in practice with a fast and effective

heuristic, and Lemma 4.1 provides a theoretically robust bound as

UB = B∗ +
wmax

emin
− wmax

Pemin
. (6)

4.3 Parametric Search

Parametric search algorithms can be constructed with a PROBE function (ei-

ther LR-PROBE or RL-PROBE given in Fig. 3), and a method to search the

space of candidate values. Below, we describe several algorithms to search the

space of bottleneck values for the heterogeneous case.

4.3.1 Nicol’s Algorithm

We revise Nicol’s algorithms for heterogeneous systems as follows. The can-

didate B values become task subchain weights divided by processor sub-

chain speeds. The algorithm starts with searching for the smallest j so that

17



NICOL (W, E , N, P )
i0 ← 1;
for b ← 1 to P − 1 do

ilow ← ib−1; ihigh ← N ;
while ilow < ihigh do

imid ← (ilow + ihigh)/2;
B ← Wib−1,imid/eb;
if PROBE(B) then

ihigh ← imid;
else

ilow ← imid + 1;
ib ← ihigh;
Bb ← Wib−1,ib/eb;

BP ← WiP−1,N/eP ;
return Bopt ← min1≤b≤P {Bp};

NICOL+ (W, E , N, P )
i0 ← 1;
LB ← B∗ ← W1,N/E1,P ;
UB ← LB + wmax × (1/emin − 1/Etot);
for b ← 1 to P − 1 do

ilow ← ib−1; ihigh ← N ;
while ilow < ihigh do

imid ← (ilow + ihigh)/2;
B ← Wib−1,imid/eb;
if LB ≤ B < UB then

if PROBE(B) then
ihigh ← imid;
UB ← B;

else
ilow ← imid + 1;
LB ← B;

else if B ≥ UB then
ihigh ← imid;

else
ilow ← imid + 1;

ib ← ihigh;
Bb ← Wib−1,ib/eb;

BP ← WiP−1,N/eP ;
return Bopt ← min1≤b≤P {Bp};

Fig. 4. Nicol’s algorithms for heterogeneous systems: (a) Nicol’s basic algorithm, (b)
Nicol’s algorithm (NICOL+) with dynamic bottleneck-value bounding.

probing with W1,j/e1 succeeds, and probing with W1,j−1/e1 fails. This means

W1,j−1/e1 < Bopt ≤ W1,j/e1, and thus in an optimal solution the probe func-

tion will assign the first j tasks to the first processor if it is the bottleneck

processor, and the first j − 1 tasks to the first processor if not. Then the opti-

mal solution value is the minimum of W1,j/e1 and the optimal solution value

for partitioning the remaining subchain Tj,N to P− 1 processors, since any so-

lution with a bottleneck value less than W1,j/e1 will assign only the first j − 1

tasks to the first processor. Finding the j value requires lg N probes, and we

repeat this search operation for all processors in order. This version of Nicol’s

algorithm runs in O(N+(P lg N)2) time. Fig. 4(a) displays this algorithm.

18



4.3.2 Nicol’s Algorithm with Dynamic Bottleneck-Value Bounding

By keeping the largest B that succeeded and the smallest B that failed, we

can improve Nicol’s algorithm by eliminating unnecessary probing. Let LB

and UB represent the lower bound and upper bound for Bopt, respectively.

If a processor cannot update LB or UB , that processor does not make any

PROBE calls. This algorithm, presented in Fig. 4(b), is referred to as NICOL+.

In the worst case, a processor makes O(lg N) PROBE calls. But, as we will

prove below, the number of probes performed by NICOL+ cannot exceed

P lg (1+wmax/(Peminwmin)). This analysis also improves known complexities

of homogeneous version of the algorithm. Lemma 4.4 describes an upper bound

on the number of probes performed by NICOL+ algorithm.

Lemma 4.4 The number of probes required by NICOL+ is upper bounded by

P lg (1+(UB − LB) / (Pwmin)).

Proof: Consider the first step of the algorithm, where we search for the

smallest separator index that makes the first processor the bottleneck proces-

sor. We can restrict this search in a range that covers only those indices for

which the weight of the first chain will be in the [LB ,UB ] interval. If there

are n1 tasks in this range, NICOL+ will require lg n1 probes. This means that

the [LB ,UB ] interval is narrowed by at least (n1 − 1)wmin after the first step.

Let kp be the number of probes by the pth processor. Since kp probes narrows

the [LB ,UB ] interval by
(
2kp − 1

)
wmin, we have

((
2k1 − 1

)
+

(
2k2 − 1

)
+ . . . +

(
2kP−1 − 1

))
wmin ≤ UB − LB ,

and thus 2k1 +2k2 + . . .+2kP−1 ≤ UB − LB

wmin
+P − 1. The corresponding total

19



number of probes is
∑P−1

p=1 kp, which reaches its maximum when
∑P−1

p=1 2kp is

maximum and k1 = k2 = . . . = kP−1 = k for some k. In that case,

(P − 1)2k ≤ UB − LB

wmin
+ P − 1

and thus

k ≤ lg

(

1 +
UB − LB

wmin(P − 1)

)

.

So, the total number of probes performed by NICOL+ is upper bounded by:

P−1∑

p=1

kp ≤ (P − 1)k ≤ (P − 1) lg

(

1 +
UB − LB

wmin(P − 1)

)

< P lg
(
1 +

UB − LB

wminP

)

!

Corollary 4.5 NICOL+ requires at most P lg(1+wmax/(Peminwmin)) probes

for heterogeneous, and P lg(1 + wmax/(Pwmin)) probes for homogeneous sys-

tems.

NICOL+ runs in O(N+P 2 lg N lg(1+wmax/(Peminwmin))) time, with the O(P lg N)

cost of a PROBE call. In most configurations, wmax/(eminwminP ) is very small,

and is O(1) if Pemin = Ω(wmax/wmin). In that case, the runtime complexity of

NICOL+ reduces to O(N+P 2 lg N).

4.3.3 Bidding Algorithm

For heterogeneous systems, the bidding algorithm uses the lower bound given

in Eq. 5 for optimal bottleneck value, and gradually increases this lower

bound. The bid of each processor Pp, for p = 1, 2, . . . , P −1, is calculated

as Wsp−1+1,sp+1 / ep, which is equal to the load of Pp if it also executes the

first task of Pp+1 in addition to its current load. Then, the algorithm selects

the processor with the minimum bid value so that this bid value becomes the

next bottleneck value to be considered for feasibility. The processors following

20



BIDDING (W, N, E , P )
minBid ← W1,N/E1,P ;
LR-PROBE(W, N, E , P,minBid);
for p ← 1 to P − 1 do

bids[p] ← Wsp−1+1,sp+1/ep;
Q ←BUILD-HEAP(P );
repeat

minP ←EXTRACT-MIN(Q);
wlast ← WsP−1+1,N/eP ;
minBid ← bids[minP ];
if minBid < wlast then

for p ← minP to P − 1 do
sp ← BINSEARCH(W,minBid × ep + W1,sp−1);
previousBid ← bids[p];
bids[p] ← Wsp−1+1,sp/ep;
if bids[p] > previousBid then

INCREASE-KEY (Q, p);
else if bids[p] < previousBid then

DECREASE-KEY (Q, p);
until minBid ≥ wlast ;

Fig. 5. Bidding algorithm for heterogeneous systems.

the bottleneck processor in the processor chain are processed in order, except

the last processor. The separator indices of these processors are adjusted ac-

cordingly so that the processors are maximally loaded not to exceed that new

bottleneck value. The load of the last processor determines the feasibility of the

current bottleneck value. If current bottleneck value is not feasible, the pro-

cess repeats. Fig. 5 presents the bidding algorithm, which uses a min-priority

queue that maintains the processors keyed according to their bid values.

In the worst case, the bidding algorithm moves P separators for O(N) posi-

tions. Choosing a new bottleneck value takes O(lg P ) time using a binary heap

implementation of the priority queue. Totally the complexity of the algorithm

is O(NP lg P ) in the worst case. Despite this high worst-case complexity, the

bidding algorithm is quite fast in practice.

21



4.3.4 Bisection Algorithm

For heterogeneous systems, the bisection algorithm can use the LB and UB

values given in Eqs. 5 and 6. A binary search on this [LB ,UB ] interval requires

O(lg(wmax/(εEtot))) probes, thus leading to an O(lg(wmax/(εEtot))P lg N)-

time algorithm, where ε is the specified accuracy of the algorithm. Fig. 6(a)

presents this ε-approximation bisection algorithm. We should note that, al-

though the homogenous version of this algorithm becomes an exact algorithm

for integer-valued workload arrays by setting ε = 1, this is not the case for

heterogeneous systems.

We enhance this bisection algorithm to be an exact algorithm for heteroge-

neous systems by extending the scheme proposed by Pınar and Aykanat [15]

for homogenous systems. After each probe, we move lower and upper bounds

to realizable bottleneck values, as opposed to the probed value. In heteroge-

neous systems, realizable bottleneck values are subchain weights divided by

appropriate processor speeds. After a successful probe, we decrease UB to the

bottleneck value of the partition constructed by the probe, and after a failed

probe we increase LB to the bid value as described for the bidding algorithm

in Section 4.3.3. Each probe eliminates at least one candidate bottleneck value,

and thus the bisection algorithm terminates in a finite number of steps with

an optimal solution. Fig. 6(b) displays the exact bisection algorithm.

5 Chain Partitioning (CP) Problem for Heterogeneous Systems

In this section, we study the problem of partitioning a chain of tasks onto

a set of processors, as opposed to a chain of processors. The solution to

22



BISECTION (W, N, E , P, ε)
LB ← W1,N/E1,P ;
UB ← LB + wmax/emin;
while UB − LB ≥ ε do

midB ← (UB + LB)/2;
if PROBE(midB ) then

UB ← midB ;
else

LB ← midB ;
return UB ;

(a)

EXACT-BISECTION (W, N, E , P )
LB ← W1,N/E1,P ;
UB ← LB + wmax/emin;
while UB > LB do

midB ← (UB + LB)/2;
if LR-PROBE(midB ) then

UB ← min1≤p≤P Wsp−1,sp/ep;
else

LB ← min1≤p≤P−1 Wsp−1,sp+1/ep;
return UB ;

(b)

Fig. 6. Bisection algorithms for heterogeneous systems: (a) ε-approximation bisec-
tion algorithm, (b) Exact bisection algorithm.

this problem is not only separators on the task chain, but also processor-to-

subchain assignments. Thus, we define a mapping M as a partition Π = 〈s0 =

0, s1, . . . , sP =N〉 of the given task chain T = 〈t1, t2, . . . tN〉 with sp ≤ sp+1 for

0 ≤ p < P , and a permutation 〈π1, π2, . . . , πP 〉 of the given set of P proces-

sors P = {P1,P2, . . . ,PP}. According to this mapping, the pth task subchain

〈tsp−1+1, . . . , tsp〉 is executed on processor Pπp . The cost C(M) of a mapping

M is the maximum subchain computation time, determined by the subchain

weight and the execution speed of the assigned processor, i.e.,

C(M) = max
1≤p≤P

{
Wsp−1+1,sp

eπp

}

.

We will prove that the CP problem is NP-complete. The decision problem for

the CP problem for heterogeneous systems is as follows.

Given a chain of tasks T = 〈t1, t2, . . . , tN 〉, a weight wi ∈ Z+ for each ti ∈ T ,

a set of processors P = {P1,P2, . . . ,PP} with P < N , an execution speed

ep ∈ Z+ for each Pp ∈ P, and a bound B, decide if there exists a mapping M

of T onto P such that C(M) ≤ B.

23



Theorem 5.1 The CP problem for heterogeneous systems is NP-complete.

Proof: We use reduction from the 3-Partition (3P) problem. A pseudo-

polynomial transformation suffices, because 3P problem is NP-complete in

the strong sense (i.e., there is no pseudo-polynomial time algorithm for the

problem unless P=NP). The 3P problem is stated in [6] as follows.

Given a finite set A of 3m elements, a bound B ∈ Z+, and a cost ci ∈ Z+

for each ai ∈ A, where
∑

ai∈A ci = mB and each ci satisfies B/4 < ci < B/2,

decide if A can be partitioned into m disjoint sets S1, S2, . . . , Sm such that

∑
ai∈Sp

ci = B for p = 1, 2, . . . , m.

For a given instance of the 3P problem, the corresponding CP problem is

constructed as follows.

• The number of tasks N is m(B +1)− 1. The weight of every (B +1)st task

is B, (i.e., wi = B for i mod (B + 1) = 0), and the weights of all other

tasks are 1.

• The number of processors P is 4m − 1. The first m − 1 processors have

execution speeds of B, (i.e., ep = B for p = 1, 2, . . . , m − 1), and the

remaining processors have execution speeds equal to the costs of items in

the 3P problem (i.e., ep = cp−m+1 for p = m, . . . , 4m − 1).

We claim that there is a solution to the 3P problem if and only if there

is a mapping M with cost C(M) = 1 for the CP problem. The following

observations constitute the basis for our proof.

• The processors with execution speeds of B must be mapped to tasks with

weight B to have a solution with cost C(M) = 1, because the execution

speeds of all other processors are ≤ B/2. These processors (tasks) serve as

24



divider processors (tasks).

• The total weight of the chain is 3m + (m− 1)B = (B + 3)m−B. The sum

of execution speeds of all processors is also (m−1)B +3m = (B +3)m−B.

This forces each processor to be assigned a load with value equal to its

execution speed to achieve a mapping with cost C(M) = 1.

As noted above, the divider processors should be assigned to the divider tasks.

Between two successive divider tasks there is a subchain of B unit-weight tasks

with total weight B, which must be assigned to a subset of processors with

total execution speed B. Since there are m such subchains, the same grouping

of the processors is also valid for grouping ci values in the 3P problem. Thus

the 3P problem can be reduced to the CP problem, proving the CP problem

is NP-hard.

The cost of a given mapping can be computed in polynomial time, thus the

problem is in NP. Thus we can conclude that the chain partitioning problem

for heterogeneous systems is NP-Complete. !

This complexity shows that we need to resort to heuristics for practical solu-

tions to the CP problem. With the nearly perfect balance results and extremely

fast runtimes as we will present in Section 6, CCP algorithms can serve as good

heuristics for the CP problem. We tried this approach by finding optimal CCP

solutions for randomly ordered processor chains of a CP instance. We observed

that the sensitivity to processor ordering is quite low. You can find a descrip-

tion of these studies in Section 6.3. We also tried improvement techniques,

where we swapped processors in the chain to decrease the bottleneck value,

but the improvements were modest and could hardly compensate the increase

in runtimes.

25



6 Experimental Results

6.1 Experimental Setup

The 1D task arrays used in both CCP and CP experiments were derived

from two different applications: image-space-parallel direct volume rendering

and row-parallel sparse matrix vector multiplication. Direct volume rendering

experiments are performed on three curvilinear datasets from NASA Ames

Research Center [1], namely Blunt Fin (blunt), Combustion Chamber (comb),

and Oxygen Post (post). These datasets are processed using the tetrahedral-

ization techniques described in [7] and [16] to produce three-dimensional (3D)

unstructured volumetric datasets. The two-dimensional (2D) workload arrays

are constructed by projecting 3D volumetric datasets onto 2D screens of res-

olution 256 × 256 using the workload criteria of image-space-parallel direct

volume rendering algorithm described in [2]. Here, the rendering operations

associated with the individual pixels of the screen constitute the computa-

tional tasks of the application. The resulting 2D task array is then mapped

to a 1D task array using Hilbert space-filling-curve traversal [13]. The work-

load distributions of the 2D task arrays are visualized in Fig. 7, where darker

areas represent more weighted tasks. The histograms at the bottom of the

2D pictures show the weight distributions of the resulting 1D task arrays. In

the sparse matrix experiments, we consider rowwise block partitioning of the

matrices obtained from University of Florida Sparse Matrix Collection [4]. In

row-parallel matrix vector multiplies, the rows correspond to the tasks to be

partitioned, and the number of nonzeros in each row is the weight of the cor-

responding task. The nonzero distributions of the sparse matrices are shown

in Fig. 8. The histograms on the right side of the visualizations represent the

number of nonzeros in each row.

26



a) Blunt Fin b) Combustion Chamber c) Oxygen Post

Fig. 7. Visualization of direct volume rendering dataset workloads. Top: workload

distributions of 2D task arrays. Bottom: histogram showing weight distributions of

1D task chains.

Table 2 displays the properties of the 1D task chains used in our experiments.

In the volume rendering dataset, the number of tasks is considerably less than

the screen resolution, because zero-weight tasks are omitted. In the sparse

matrix dataset, the number of tasks is equal to the number of rows.

We have experimented with P = 32, 64, 128, 256, 512, 1024, and 2048-way par-

titioning of each test data. In these experiments, the processor speeds are

chosen uniformly distributed in the 1–20 range, i.e., 1 ≤ ep ≤ 20, for each

processor Pp. The P -way partitioning of a given task chain constitutes a par-

titioning instance.

In the experiments, the solution qualities are represented by percent load

imbalance values. The percent load imbalance of a partition is computed as

100 × (B − B∗)/B∗, where B denotes the bottleneck value of the respective

partition.

27



a) g7jac050sc b) language

c) mark3jac060 d) Stanford

e) Stanford Berkeley f) torso1

Fig. 8. Visualization of sparse matrix dataset workloads. Left: non-zero distribution

of the sparse matrices. Right: histogram showing weight distributions of the 1D task

chains.

6.2 CCP Experiments

The proposed CCP algorithms were implemented in the Java language. Ta-

bles 3 and 4 compare the solution qualities of heuristics with respect to those

of the optimal partitions obtained by the exact algorithms. In these tables,

OPT values refer to the optimal solution value. The bottom parts of these two

tables show the geometric averages of the percent load imbalance values over

number of processors. As seen in Tables 3 and 4, RB performs considerably

28



Table 2
Properties of the test set
Name No. of tasks N Workload

Total Per task

Wtot wavg wmin wmax

Volume rendering dataset

blunt 20.6 K 1.9 M 90.95 36 171

comb 32.2 K 2.1 M 64.58 14 149

post 49.0 K 5.4 M 109.73 33 199

Sparse matrix dataset

g7jac050sc 14.7 K 0.2 M 10.70 2 149

language 399.1 K 1.2 M 3.05 1 11555

mark3jac060 27.4 K 0.2 M 6.22 2 44

Stanford 261.6 K 2.3 M 8.84 1 38606

Stanford Berkeley 615.4 K 7.6 M 12.32 1 83448

torso1 116.2 K 8.5 M 73.32 9 3263

better than MP. Out of 63 partitioning instances, the RB and MP heuristics

find the best solutions in 54 and 17 partitioning instances, respectively.

As seen in Tables 3 and 4, the quality gap between exact algorithms and

heuristics increases with increasing number of processors. For instance, in

2048-way partitioning of the torso1 matrix, best heuristic finds a solution

with 186.67% load imbalance, which means a processor is loaded more than

2.8 times the average load. This will cause a slowdown as the number of

processors increase. An optimal solution however, will have a load imbalance

value of 28.43%, providing scalability to thousands of processors.

Tables 5 and 6 display the execution times of the proposed CCP algorithms

on a workstation equipped with a 3 GHz Pentium-IV and 1 GB of memory.

In these tables, DP+, NC+, BID and EBS respectively represent the DP+,

NICOL+, BIDDING and EXACT-BISECTION algorithms presented in Figs. 2,

4, 5 and 6. For a better relative performance comparison, execution times of

the algorithms are normalized with respect to those of the RB heuristic and

averages of these normalized values over P are presented at the bottom of the

29



Table 3
Percent load imbalance values for the volume rendering dataset

CCP instance Heuristics OPT

Name P RB MP

blunt 32 0.13 0.21 0.07
64 0.76 0.76 0.14

128 1.52 1.52 0.32
256 8.35 8.35 0.68
512 10.66 25.31 1.21

1024 30.85 50.19 2.40
2048 63.08 92.52 5.01

comb 32 0.12 0.37 0.06
64 0.85 1.23 0.13

128 1.71 3.01 0.22
256 4.57 4.57 0.43
512 13.35 21.63 0.93

1024 27.55 29.08 1.81
2048 36.64 87.62 3.67

post 32 0.08 0.08 0.04
64 0.37 0.37 0.07

128 1.43 1.23 0.13
256 2.04 2.04 0.26
512 5.24 10.66 0.52

1024 15.87 13.09 1.05
2048 29.54 37.44 2.19

Geometric averages over P
32 0.11 0.18 0.05
64 0.62 0.70 0.11

128 1.55 1.78 0.21
256 4.27 4.27 0.42
512 9.07 18.00 0.84

1024 23.80 26.73 1.66
2048 40.87 67.20 3.43

table.

In Tables 5 and 6, relative performance comparison of heuristics shows that

MP is slightly faster than RB. Since RB outperforms MP in terms of solution

quality as shown in Tables 3 and 4, these results reveal the superiority of RB

to MP.

In Tables 5 and 6, relative performances of exact CCP algorithms shows that

both NICOL+ and EBS are an order of magnitude faster than DP+ and BID

for both volume rendering and sparse matrix datasets. As also seen in these

two tables, EBS is slightly faster than NICOL+.

It is worth highlighting that for small to medium concurrency, the time it takes

EBS and NICOL+ algorithms to find optimal solutions is less than three times

30



Table 4
Percent load imbalance values for the sparse matrix dataset

CCP instance Heuristics OPT

Name P RB MP

g7jac050sc 32 1.29 2.72 0.33
64 23.92 23.92 0.75

128 10.03 12.95 1.59
256 55.44 136.95 2.93
512 121.67 203.52 6.86

1024 141.33 804.56 13.96
2048 540.52 719.69 29.58

language 32 1.03 0.93 0.07
64 0.23 0.35 0.07

128 1.19 7.30 0.13
256 48.43 48.43 26.11
512 169.40 169.40 155.93

1024 433.24 1, 347.37 406.58
2048 1, 160.51 1, 160.51 908.41

mark3jac060 32 0.09 1.68 0.09
64 1.04 1.04 0.19

128 5.70 5.70 0.39
256 10.43 10.43 0.63
512 26.26 42.04 1.36

1024 49.95 68.70 2.81
2048 111.44 447.25 5.72

Stanford 32 21.32 38.49 3.68
64 43.24 54.53 7.68

128 67.09 116.07 17.73
256 171.60 379.11 121.62
512 499.67 1, 844.58 349.75

1024 1, 086.98 3, 749.09 790.23
2048 1, 765.39 2, 451.80 1, 672.12

Stanford Berkeley 32 8.88 8.87 0.98
64 90.20 92.58 2.49

128 78.69 78.69 5.68
256 120.40 1, 123.38 46.08
512 396.54 396.54 196.45

1024 507.94 2, 357.13 486.79
2048 1, 068.08 2, 768.97 1, 068.08

torso1 32 1.47 0.87 0.42
64 2.02 6.64 0.81

128 6.89 6.89 1.19
256 43.40 43.65 1.89
512 106.44 106.44 7.45

1024 188.02 308.62 15.41
2048 186.67 713.40 28.43

Geometric averages over P
32 1.80 3.28 0.38
64 5.97 8.15 0.74

128 11.64 17.99 1.46
256 54.12 104.29 8.95
512 150.05 219.83 30.10

1024 261.19 766.69 67.49
2048 539.31 1, 103.86 140.83

the time of the fastest heuristic. More precisely, on average, EBS takes only

172.6% more time than the fastest heuristic for 256-way partitioning. On the

other hand, at higher number of processors, the solution qualities of heuristics

degrade significantly: on average, optimal solutions provide 9.44, 9.35 and

31



Table 5
Partitioning times (in msecs) for the volume rendering dataset

CCP Instance Heuristics Exact Algorithms

Name P RB1 RB2 MP DP+ NC+ BID EBS

blunt 32 0.34 0.34 0.33 1 0.48 0.50 0.44
64 0.35 0.37 0.35 1 0.70 0.73 0.60

128 0.39 0.42 0.37 2 1.21 1.96 0.86
256 0.45 0.51 0.42 5 1.95 5.63 1.71
512 0.59 0.71 0.52 14 2.72 13.85 3.24

1024 0.83 1.10 0.71 54 8.24 40.91 6.04
2048 1.32 1.93 1.06 213 11.59 125.67 13.39

comb 32 0.52 0.53 0.52 1 0.67 0.71 0.64
64 0.54 0.55 0.53 1 0.82 1.00 0.80

128 0.57 0.60 0.56 2 1.39 2.17 1.26
256 0.64 0.70 0.61 5 2.21 5.72 2.08
512 0.78 0.91 0.71 17 4.00 19.16 3.59

1024 1.03 1.31 0.90 62 7.27 58.37 7.05
2048 1.53 2.16 1.31 242 13.70 174.19 13.05

post 32 0.81 0.82 0.81 2 0.96 0.96 0.91
64 0.83 0.84 0.82 2 1.22 1.44 1.10

128 0.86 0.89 0.85 3 1.74 2.67 1.52
256 0.93 1.00 0.90 5 2.72 6.48 2.44
512 1.08 1.20 1.01 16 4.55 17.65 3.70

1024 1.34 1.61 1.21 55 8.89 55.77 7.52
2048 1.86 2.46 1.63 216 11.12 148.28 13.88

Averages normalized w.r.t. RB1 times
32 1.00 1.01 0.99 2 1.29 1.34 1.22
64 1.00 1.03 0.99 2 1.66 1.88 1.50

128 1.00 1.05 0.97 4 2.51 3.98 2.06
256 1.00 1.10 0.95 8 3.57 9.46 3.22
512 1.00 1.16 0.91 21 4.67 21.52 4.52

1024 1.00 1.26 0.87 55 7.85 49.04 6.56
2048 1.00 1.40 0.85 145 7.90 96.18 8.70

8.30 times better load imbalance values than the best heuristic for 512, 1024

and 2048-way partitionings, respectively. According the these experimental

results, we recommend the use of exact CCP algorithms instead of heuristics

for heterogeneous systems.

6.3 CP Experiments

Tables 7 and 8 display the results of our experiments to show the sensitivity

of the processor orderings on the solution quality of CP problem instances. In

these experiments, we find the optimal CCP solutions for R randomly ordered

processor chains of a CP instance, and display geometric averages of the best

and average load imbalance values over number of processors. As seen in the

tables, for a fixed P , the average imbalance values almost remain the same, as

32



Table 6
Partitioning times (in msecs) for the sparse matrix dataset

CCP Instance Heuristics Exact Algorithms

Name P RB1 RB2 MP DP+ NC+ BID EBS

g7jac050sc 32 0.25 0.26 0.25 1 0.48 0.50 0.40
64 0.26 0.28 0.26 1 0.66 1.12 0.61

128 0.30 0.33 0.28 4 1.00 3.07 0.93
256 0.36 0.42 0.33 13 2.19 8.11 1.78
512 0.49 0.62 0.42 58 3.70 27.24 3.22

1024 0.72 1.01 0.60 228 5.23 76.64 6.75
2048 1.19 1.80 0.95 1744 15.62 206.17 12.12

language 32 8.46 8.47 8.46 18 8.68 10.01 8.67
64 8.48 8.50 8.47 20 9.11 10.79 8.93

128 8.53 8.55 8.51 27 9.81 14.29 9.67
256 8.61 8.67 8.58 1484 11.80 8.80 11.03
512 8.81 8.94 8.73 5576 11.20 9.13 11.96

1024 9.31 9.60 9.16 16625 14.94 9.72 16.19
2048 10.14 10.75 9.85 33115 17.24 10.89 21.22

mark3jac060 32 0.45 0.46 0.45 1 0.65 0.59 0.59
64 0.47 0.48 0.46 1 0.86 0.91 0.71

128 0.50 0.53 0.49 3 1.06 1.81 1.10
256 0.57 0.62 0.54 7 2.27 4.57 1.75
512 0.70 0.82 0.64 44 3.22 10.68 3.44

1024 0.95 1.21 0.83 176 7.81 27.67 6.28
2048 1.44 1.99 1.20 782 14.26 83.03 10.59

Stanford 32 7.63 7.65 7.63 37 7.93 46.99 7.95
64 7.65 7.67 7.65 119 8.57 215.40 8.27

128 7.69 7.72 7.68 1590 9.38 709.72 8.93
256 7.77 7.84 7.74 7769 9.79 6983.20 10.21
512 7.95 8.08 7.87 18887 11.06 17990.28 12.52

1024 8.35 8.65 8.20 45441 13.50 40059.93 17.34
2048 9.16 9.77 8.82 95157 21.96 49598.76 24.69

Stanford Berkeley 32 13.95 13.96 13.95 46 14.33 35.83 14.31
64 13.98 13.99 13.97 119 14.99 111.68 14.74

128 14.02 14.05 14.00 505 16.12 401.75 15.61
256 14.10 14.17 14.07 4832 18.81 3426.23 17.19
512 14.28 14.42 14.21 20308 21.84 12252.13 19.20

1024 14.73 15.01 14.57 49328 26.96 26545.32 23.84
2048 15.58 16.20 15.30 102518 36.63 55089.06 32.35

torso1 32 2.36 2.36 2.35 6 2.64 5.33 2.58
64 2.38 2.39 2.37 11 2.94 6.30 2.86

128 2.41 2.44 2.40 26 3.63 19.87 3.31
256 2.49 2.55 2.45 128 3.84 45.34 4.62
512 2.62 2.75 2.55 427 7.10 249.26 6.95

1024 2.88 3.18 2.76 1862 11.84 657.00 11.19
2048 3.40 4.02 3.16 7485 18.86 1329.05 19.65

Averages normalized w.r.t. RB1 times
32 1.00 1.01 1.00 3 1.26 2.58 1.18
64 1.00 1.02 0.99 6 1.47 7.70 1.37

128 1.00 1.03 0.99 46 1.75 24.12 1.69
256 1.00 1.06 0.97 269 2.61 198.60 2.29
512 1.00 1.09 0.95 796 3.18 548.24 3.07

1024 1.00 1.14 0.93 1953 4.09 1160.17 4.20
2048 1.00 1.21 0.91 4074 5.83 1595.60 5.03

expected. Although the best imbalance values decrease with increasing R, the

decreases are quite small, especially for large P . Moreover, for a fixed R, the

relative difference between the best and average imbalance values decreases

with increasing P .

33



Table 7
Geometric averages of percent load imbalance ratios for R randomly ordered pro-

cessor chains for the volume rendering dataset

R = 10 R = 100 R = 1000 R = 10000

P best avg best avg best avg best avg

32 0.043 0.051 0.039 0.051 0.034 0.052 0.033 0.052
64 0.091 0.104 0.085 0.126 0.081 0.108 0.074 0.118

128 0.201 0.215 0.190 0.214 0.176 0.213 0.170 0.213
256 0.395 0.425 0.378 0.425 0.377 0.425 0.363 0.425
512 0.822 0.849 0.803 0.852 0.802 0.853 0.772 0.853

1024 1.638 1.686 1.599 1.680 1.593 1.680 1.578 1.681
2048 3.369 3.449 3.335 3.447 3.290 3.446 3.250 3.445

Table 8
Geometric averages of percent load imbalance ratios for R randomly ordered pro-

cessor chains for the sparse matrix dataset

R = 10 R = 100 R = 1000 R = 10000

P best avg best avg best avg best avg

32 0.219 0.467 0.135 0.405 0.061 0.412 0.053 0.425
64 0.436 0.673 0.379 0.827 0.305 0.901 0.231 0.910

128 1.110 2.164 0.960 2.154 0.885 2.278 0.815 2.250
256 8.743 9.148 8.534 9.191 8.377 9.221 8.317 9.858
512 29.024 30.386 28.593 30.266 28.182 30.186 27.883 30.175

1024 66.090 67.322 65.464 67.427 64.720 67.370 64.176 67.370
2048 139.262 140.655 137.273 140.715 136.582 140.684 135.486 140.699

These experimental findings show that processor ordering is important for so-

lution quality only for small P . This is expected since the variance among

processor speeds is low, unlike the variance among task weights. These exper-

imental results also show that exact CCP algorithms can serve as an effective

heuristic for the CP problem.

7 Conclusions

We studied the problem of one-dimensional partitioning of nonuniform work-

load arrays with optimal load balancing for heterogeneous systems. We in-

vestigated two cases: chain-on-chain partitioning, where a chain of tasks is

partitioned onto a chain of processors; and chain partitioning, where the task

chain is partitioned onto a set of processors (i.e., permutation of the pro-

cessors is allowed). We showed that chain-on-chain partitioning algorithms

34



for homogenous systems can be revised to solve this partitioning problem for

heterogeneous systems, without altering computational complexities of these

algorithms. We proved that the chain partitioning problem is NP-complete,

and empirically showed that exact CCP algorithms can serve as an effective

heuristic, for the CP problem. Our experiments proved the effectiveness of

our techniques, as the exact algorithms work much better than heuristics,

and balanced work decompositions can be achieved even for high numbers of

processors.

References

[1] NASA advanced supercomputing division (NAS) dataset archive,

http://www.nas.nasa.gov/Research/Datasets/datasets.html.

[2] B. B. Cambazoglu, C. Aykanat, Hypergraph-partitioning-based remapping

models for image-space-parallel direct volume rendering of unstructured grids,

IEEE Transactions on Parallel and Distributed Systems 18 (1) (2007) 3–16.

[3] H.-A. Choi, B. Narahari, Algorithms for mapping and partitioning chain

structured parallel computations, in: International Conference on Parallel

Processing, 1991.

[4] T. Davis, University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices, NA Digest, vol. 97, no. 23

(June 1997).

[5] K. D. Devine, B. Hendrickson, E. G. Boman, M. M. S. John, C. Vaughan,

Zoltan: a dynamic load-balancing library for parallel applications – user’s guide,

Tech. Rep. SAND99-1377, Sandia National Libraries (1999).

35



[6] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,

1990.

[7] M. P. Garrity, Raytracing irregular volume data, in: VVS ’90: Proceedings of

the 1990 workshop on Volume visualization, ACM Press, New York, NY, USA,

1990.

[8] H. Kutluca, T. M. Kurç, C. Aykanat, Image-space decomposition algorithms

for sort-first parallel volume rendering of unstructured grids, The Journal of

Supercomputing 15 (1) (2000) 51–93.

[9] V. J. Leung, E. M. Arkin, M. A. Bender, D. Bunde, J. Johnston, A. Lal,

J. S. B. Mitchell, C. Phillips, S. S. Seiden, Processor allocation on Cplant:

Achieving general processor locality using one-dimensional allocation strategies,

in: CLUSTER ’02: Proceedings of the IEEE International Conference on Cluster

Computing, IEEE Computer Society, Washington, DC, USA, 2002.

[10] F. Manne, B. Olstad, Efficient partitioning of sequences, IEEE Transactions on

Computers 44 (11) (1995) 1322–1326.

[11] S. Miguet, J.-M. Pierson, Heuristics for 1D rectilinear partitioning as a low

cost and high quality answer to dynamic load balancing, in: HPCN Europe

’97: Proceedings of the International Conference and Exhibition on High-

Performance Computing and Networking, Springer-Verlag, London, UK, 1997.

[12] D. M. Nicol, Rectilinear partitioning of irregular data parallel computations,

Journal of Parallel and Distributed Computing 23 (2) (1994) 119–134.

[13] J. R. Pilkington, S. B. Baden, Dynamic partitioning of non-uniform structured

workloads with spacefilling curves, IEEE Transactions on Parallel and

Distributed Systems 7 (3) (1996) 288–300.

36



[14] A. Pınar, C. Aykanat, Sparse matrix decomposition with optimal load

balancing, in: HIPC ’97: Proceedings of the Fourth International Conference

on High-Performance Computing, IEEE Computer Society, Washington, DC,

USA, 1997.

[15] A. Pinar, C. Aykanat, Fast optimal load balancing algorithms for 1D

partitioning, Journal of Parallel and Distributed Computing 64 (8) (2004) 974–

996.

[16] P. Shirley, A. Tuchman, A polygonal approximation to direct scalar volume

rendering, in: VVS ’90: Proceedings of the 1990 workshop on Volume

visualization, ACM Press, New York, NY, USA, 1990.

37


